CORROSION AND CORROSION PROTECTION #### TYPES OF CORROSION - SURFACE RUSTING - PITTING CORROSION - STRESS CORROSION - HYDROGEN EMBRITTLEMENT #### ANODIC CORROSION - NEEDS: - A DIFFERENCE IN ELECTRIC POTENTIAL - THE PRESENCE OF AN ELECTROLYTE - OXYGEN ### FORMATION OF CORROSION ELEMENTS #### DIAGRAM OF POURBAIX #### HYDROGEN EMBRITTLEMENT - FAVORED BY: - HIGH STRESS - PRESENCE OF WATER - DEFFICIENCY OF OXYGEN - LOCALLY LOWER PH-VALUE - PRESENCE OF SULFIDES - HIGH STRENGTH STEEL #### RATE OF CORROSION - **DEPENDS ON:** - RESISTANCE OF THE ELECTROLYTE - DIFFERENCE IN ELECTRIC POTENTIAL - PRESENCE OF AERATED ELEMENTS - **♦ TEMPERATURE** - **TYPE OF STEEL** # FIP ACCELERATED CORROSION TESTS BY LUCIUS PITKINS IN A 20% AMMONIUM THIOCYANIDE @ 50 C STRESSED TO 0.8 Fu | 2 2 | | | | Mechanical
properties | | | | | | | | | |------|---------------------------------------|-------|-----------------------------|--------------------------|-------------------|----------------------------|--|-----------|-----|--|--|----------------------| | Eber | Specimen | Diam | Cross-
sectional
area | | Yield
strength | | Time to failure — t (hr), (f) = percentile in a gaussologarithmic plot | | | | Remarks | | | | Material | mm | mm² | N/mm ² | N/mm² | min | mex | t(f) = 10 | 115 |) = 50 1(| f)=90 | | | 2 | 130/145
SiCr HT bar | 9.08 | 64.8 | 1481 | 1383 | 198.35, 211.20 (a), 211.30 | | | | (a) Specimen did not fail (3 specimens rested) | | | | 3 | 130/145
SiCr HT bar
(D) | 9.15 | 64 | 1462 | 1374 | 5.25 | > 200 | 3.2 | | 29 | > 200 | (9 specimens tested) | | 4* | 110/125
SiCr HT bar | 31.47 | 777.8 | 1268 | 1120 | | | | | | Specimens did not fail
(3 specimens tested) | | | 6 | ASTM A 722
Bar (D) | 32.2 | 814.3 | 1156 | 1038 | / 14 / 14 / | | | | | Specimens did not fail
(2 specimens tested) | | | 13 | Center wire of 7 wire strand (U.S.) | 5.24 | 21.57 | 1914 | 1737 | 7.1, 2.7 | | | | | (2 specimens tested) | | | 14 | ASTM A 416
7 wire strand
(U.S.) | 9.52 | 51.77 | 2000 | | 4.8, 6.2 | | | | (2 specimens tested) | | | # ACCUMULATED FREQUENCY OF CORROSION DAMAGES # CORROSION PROTECTION DECISION TREE ## DEFINITION OF AGGRESSIVE GROUND #### Ground is aggressive when: - •pH less than 4.5 - •Resistivity less than 2,000 ohm-cm - Chemical composition (sulfites) - Ground water #### **AGGRESSIVITY OF SOILS** # CORROSION PROTECTION REQUIREMENTS | | PROTECTION REQUIREMENTS | | | | | | | |------------------------------------|--------------------------------|--|--|--|--|--|--| | CLASS | ANCHORAGE | UNBONDED
LENGTH | TENDON BOND
LENGTH | | | | | | I
ENCAPSULATED
TENDON | 1. TRUMPET 2. COVER IF EXPOSED | 1. GREASE-FILLED SHEATH, OR 2. GROUT-FILLED SHEATH, OR 3. EPOXY FOR FULLY BONDED ANCHORS | 1. GROUT-FILLED ENCAPSULATION, OR 2. EPOXY | | | | | | II
GROUT
PROTECTED
TENDON | 1. TRUMPET 2. COVER IF EXPOSED | 1. GREASE-FILLED
SHEATH, OR
2. HEAT SHRINK
SLEEVE | GROUT | | | | | # CLASS I & CLASS II PROTECTION Figure 5.1 Class I Protection – Encapsulated Anchor #### **MULTI-STRAND ANCHORS** ## PROPERTIES FOR PLASTIC SHEATHING | Properties | Unit | high o | density PVC
test method
according
DIN | PRODUCTION OF STREET | test method
according
DIN | | density PE
test method
according
DIN | |------------------------------------|-------------------|---------------|--|----------------------|---------------------------------|-------|---| | yield stress
(tensile strength) | N/mm ² | 50 | 53455 | 33) | 53455 | 21-28 | 53455 | | strain at yield stress | 8 | 12 | 53455 | 20} | ISO/R 527 | 16 | ISO/R 527 | | ultimate strength | N/mm ² | >45
e.g.53 | 53455 | 41 | speed =
125 mm/min | 32-40 | method E | | strain at ultimate strength | 8 | 100 | 53455 | 800 | | 800 | 53455 | | bending creep
modulus (1 min) | N/mm ² | 2950 | 53457 | 1200 | 53457 | 1500 | 53457 | | Shore hardness | | D 83 | 53505 | D 62 | 53505 | D 60 | 53505 | ## PROPERTIES OF CORROSION PROOF COMPOUNDS | Property | Units | Test method | Proposed acceptence values | | | |--|-------------|--|----------------------------|--|--| | content of free sulphur and sulphides | ppm | DIN 51759
ASTM D-130-75 | ≤ 10 | | | | content of ionic chlorides nitrates rhodanides | ppm
" | ASTM D512
ASTM D992 DIN
51576 | ≤ 10
≤ 10
≤ 10 | | | | spec. resistivity | Ω.cm | DIN 53482 | ≥10 | | | | water absorption 0.1 N KOH, after 30 days | % | DIN 53495 | ≤ 2 | | | | saponification (acidity) | mg
KOH/g | DIN 53401
ASTM D 94-91 | ≤ 10 | | | | deciling on filter paper at 50° C ,after 7 days | dia
mm | no standard
specimendia 20 mm | ≤ 100 | | | | penetration depth at
deoiling test on hardened
cement grout at 50° C
after 7 days | dia
mm | no standard | ≤ 2 | | | | thermal stability, 24h | °C | 10% inclined channel 26x18 mm with sieve at lower end, mesh width 0,5 mm | ≥40 | | | | drop point | °c | DIN 51801 | ≥ 60 | | | #### **GREASE** CONSISTS OF: PETROLEUM OIL CORROSION PREVENTIVE ADDITIVES ORGANIC SOAP **RESISTANT TO BUT NOT INSOLUBLE IN WATER** #### WAX CONSISTS OF: MICROCRYSTALLINE WAX (HYDROCARBONS) PETROLATUMS (OILS AS A SOFTENER) ### HIGH MELT POINT INERT IN CONTACT WITH WATER #### WAX VERSUS GREASE - WAX DOES NOT DEOIL IN HOT TEMPERATURES - WAX DOES NOT LOOSE OIL WHEN IN CONTACT WITH GROUT - WAX DOES NOT DECOMPOSE IN WATER - WAX MORE RESISTANT TO HYDROSTATIC PRESSURE ### 5 SAMPLES, October 2000 ### 5 SAMPLES, October 2000 ### 5 SAMPLES, October 2000 #### WATER IMMERSION TEST ### **EPOXY COATED STRAND** ### EPOXY-COATED STRAND, **ASTM A 882** - Individual wires are coated(15-40mil thickness) - Special design wedge - Grid to enhance bond to grout - Good corrosion protection(no need for corrugated sheathing) - Smaller drilled hole diameter - Prefabricated, ready for installation - Special un-coiler and stressing equipment - Large capacity ground anchors (Retrofit/New) - Post Tensioning(Cable Stay bridges) # CORROSION AND CORROSION PROTECTION